

CONSOLIDATED CHEMICAL CO.

ABN 34 527 060 773 ACN 005 056 502

52-62 Waterview Close, DANDENONG SOUTH, 3175 P.O. BOX 4415, DANDENONG SOUTH, 3164, VIC, AUSTRALIA. PHONE (03) 9799 7555 FAX (03) 9799 7666 24 hours emergency response : 1800 839 984 E-mail: sales@conchem.com.au Website: www.conchem.com.au

TANNING FORMULA

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 1 of 14

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

TANNING FORMULA

PRODUCT USE

Used according to manufacturer's directions.

SUPPLIER

Company: Consolidated Chemical Co. Address: 52-62 Waterview Close Dandenong South VIC, 3175 Australia Telephone: +61 3 9799 7555 Emergency Tel: 1800 839 984 Fax: +61 3 9799 7666 Email: melb@conchem.com.au NZ DISTRIBUTOR: Steve's Wholesale Ltd Units 5-7 / 408 The Esplanade Island Bay Wellington 6023 04 383 7351 0800 303 303 team@steveswholesale.nz Emergency Contact: Steve Collings 0274 905 708

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

RISK

- Harmful by inhalation and in contact with skin.
- Causes burns.
- Risk of serious damage to eyes.
- Harmful to aquatic organisms.

SAFETY

- Keep locked up.
- Do not breathe gas/ fumes/ vapour/ spray.
- Avoid contact with eyes.
- Wear suitable protective clothing.
- Use only in well ventilated areas.
- Keep container in a well ventilated place.
- To clean the floor and all objects contaminated by this
- material, use water.
- Keep container tightly closed.
- · Take off immediately all contaminated clothing.
- In case of accident or if you feel unwell, IMMEDIATELY contact

Doctor or Poisons Information Centre (show label if possible).

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

24

7732-18-5

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
NAME	CAS RN	%		
chromic sulfate, basic	12336-95-7	76		

chromic sulfate, basic water Note: Manufacturer has supplied full ingredient information to allow CHEMWATCH assessment.

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

Treat symptomatically.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- · Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- · Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

FIRE/EXPLOSION HAZARD

- · Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), sulfur oxides (SOx), metal oxides, other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

HAZCHEM

None

Personal Protective Equipment

Breathing apparatus. Gas tight chemical resistant suit. Limit exposure duration to 1 BA set 30 mins.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- · Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- · Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 4 of 14 Section 6 - ACCIDENTAL RELEASE MEASURES

MAJOR SPILLS

- Moderate hazard.
- · Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- · Wash area and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- DO NOT allow clothing wet with material to stay in contact with skin.

SUITABLE CONTAINER

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides.
- Avoid reaction with oxidising agents.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 5 of 14 Section 7 - HANDLING AND STORAGE

- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

*				*	×	
+	+	+	+	Х	+	

- +: May be stored together
- O: May be stored together with specific preventions
- X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS Source	Material	TWA mg/m³		
Australia Exposure Standards	chromic sulfate, basic (Chromium (III) compounds (as Cr))	0.5		
The following materials had no OELs on our records • water: CAS:7732- 18- 5				
EMERGENCY EXPOSURE LIMITS Material Revise chromic sulfate, basic 36023 2				

MATERIAL DATA

TANNING FORMULA: Not available

CHROMIC SULFATE, BASIC:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 6 of 14 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and

• acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

for chrome(II/III)-containing substances:

Because of the low toxicity of chromium metal and its divalent/ trivalent compounds the recommended TLV is thought to minimise the potential of pulmonary disease and other toxic effects. Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium.

Such surveillance should emphasise

- demography, occupational and medical history and health advice
- physical examination with emphasis on the respiratory system and skin
- weekly skin inspection of hands and forearms by a "responsible person".

WATER:

■ No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

EYE

- Chemical goggles.
- · Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A
 written policy document, describing the wearing of lens or restrictions on use, should be created for each
 workplace or task. This should include a review of lens absorption and adsorption for the class of
 chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in
 their removal and suitable equipment should be readily available. In the event of chemical exposure, begin
 eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the
 first signs of eye redness or irritation lens should be removed in a clean environment only after workers
 have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 7 of 14 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- · Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Liquid; mixes with water.

PHYSICAL PROPERTIES

Liquid.

Mixes with water.

State Melting Range (\C) Boiling Range (\C) Flash Point (\C) Decomposition Temp (\C) Autoignition Temp (\C) Upper Explosive Limit (%) Lower Explosive Limit (%)	Liquid Not Available Not Available Not Available Not Available Not Available Not Available Not Available	Molecular Weight Viscosity Solubility in water (g/L) pH (1% solution) pH (as supplied) Vapour Pressure (kPa) Specific Gravity (water=1) Relative Vapour Density (air=1)	Not Applicable Not Available Miscible Not Available Not Available Not Available Not Available Not Available
Volatile Component (%vol)	Not Available	(air=1) Evaporation Rate	Not Available

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

Sulfates are not well absorbed orally, but can cause diarrhoea.

EYE

■ The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

If applied to the eyes, this material causes severe eye damage.

SKIN

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material can produce chemical burns following direct contactwith the skin.

Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.

Open cuts, abraded or irritated skin should not be exposed to this material.

Solution of material in moisture on the skin, or perspiration, may increase irritant effects.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Inhalation may result in chrome ulcers or sores of nasal mucosa and lung damage.

CHRONIC HEALTH EFFECTS

■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Chromium (III) is an essential trace mineral. Chronic exposure to chromium (III) irritates the airways, malnourishes the liver and kidneys, causes fluid in the lungs, and adverse effects on white blood cells, and also increases the risk of developing lung cancer. Chromium (VI) can irritate the skin, eyes and airways. Allergic reactions can involve both the skin and airways, and the compounds can diminish taste and smell, discolour the skin and eyes, cause blood disorders and damage the liver, kidneys, digestive tract and lungs. It predisposes humans to cancers of the respiratory tract and digestive system. Ulceration to the skin can occur, and, chromium (VI) is one of the most allergenic substances known.

TOXICITY AND IRRITATION

TANNING FORMULA:

Not available. Refer to individual constituents.

CHROMIC SULFATE, BASIC:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

Oral (woman) LDLo: 960 mg/kg Oral (Human) LD: 960 mg/kg Oral (Rat) LD50: 7760 mg/kg Oral (Mouse) LD50: 2900 mg/kg ■ For chrome(III) and other valence states (except hexavalent):

IRRITATION Nil Reported

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 9 of 14 Section 11 - TOXICOLOGICAL INFORMATION

On dermal and inhalation exposure, chromium and its compounds can be a potent sensitiser, known as particulates, not gases. Studies show that it has complex toxicity mechanism with hexavalent chromium associated with an increased risk of lung damage and respiratory cancers (primarily bronchogenic and nasal cancers). However, there is no evidence that elemental, divalent, or trivalent chromium compounds causes cancer or genetic toxicity. The lesser potency of trivalent chromium relative to hexavalent chromium is likely related to its higher redox potential and greater ability to enter cells. Its biologically active molecule called chromodulin or (GTF) may help facilitate interactions of insulin with its receptor site, influencing protein, glucose, and lipid metabolism.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

WATER:

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

CHROMIC SULFATE, BASIC:

Harmful to aquatic organisms.

for inorganic sulfates:

Environmental fate:

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre.

Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) contribute to the removal of sulfate from the atmosphere.

In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Sulfates can be taken up by plants and be incorporated into the parenchyma of the plant.

Sulfate in water can also be reduced by sulfate bacteria (Thiobacilli) which use them as a source of energy. In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur, and thereby included in the sulfur cycle. Sodium sulfate is not reactive in aqueous solution at room temperature. Sodium sulfate will completely dissolve, ionise and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited, the majority of sulfates participate in the sulfur cycle in which natural and industrial sodium sulfate are not distinguishable

The BCF of sodium sulfate is very low and therefore significant bioconcentration is not expected. Sodium and sulfate ions are essential to all living organisms and their intracellular and extracellular concentrations are actively regulated. However some plants (e.g. corn and Kochia Scoparia), are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants. Ecotoxicity:

For sulfate in general: Fish LC50: toxic from 7000 mg/l

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 10 of 14 Section 12 - ECOLOGICAL INFORMATION

Bacteria: toxic from 2500 mg/l

Algae were shown to be the most sensitive to sodium sulfate; EC50 120 h = 1,900 mg/l. For invertebrates (Daphnia magna) the EC50 48 h = 4,580 mg/l and fish appeared to be the least sensitive with a LC50 96h = 7, 960 mg/l for Pimephales promelas. Activated sludge showed a very low sensitivity to sodium sulfate. There was no effect up to 8 g/l. Sodium sulfate is not very toxic to terrestrial plants. Picea banksiana was the most sensitive species, an effect was seen at 1.4 g/l. Sediment dwelling organisms were not very sensitive either, with an LC50 96h = 660 mg/l for Trycorythus sp. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. Toxicity to terrestrial plants is also low. No data were found for long term toxicity. The acute studies all show a toxicity of sodium sulfate higher than 100 mg/l, no bioaccumulation is expected.

Chromium in the oxidation state +3 (the trivalent form) is poorly absorbed by cells found in microorganisms, plants and animals. Chromate anions (CrO4-, oxidation state +6, the hexavalent form) are readily transported into cells and toxicity is closely linked to the higher oxidation state.

Chromium Ecotoxicology:

Toxicity in Aquatic Organisms:

Chromium is harmful to aquatic organisms in very low concentrations. Fish food organisms are very sensitive to low levels of chromium. Chromium is toxic to fish although less so in warm water. Marked decreases in toxicity are found with increasing pH or water hardness; changes in salinity have little if any effect. Chromium appears to make fish more susceptible to infection. High concentrations can damage and/or accumulate in various fish tissues and in invertebrates such as snails and worms.

Reproduction of Daphnia is affected by exposure to 0.01 mg/kg hexavalent chromium/litre Toxicity of chromium in fresh-water organisms (50% mortality)*

Compound	Category	Exposure	Toxicity Range (mg/litre)	Most sensitive species
hexavalent chrome	invertebrate	acute long- term	0.067- 59.9 -	scud -
	vertebrate	acute long- term	17.6- 249 0.265- 2.0	fathead minnow rainbow trout
trivalent chrome	invertebrate	acute long- term	2.0- 64.0 0.066	cladoceran cladoceran
	vertebrate invertebrate	acute long- term	33.0- 71.9 1.0	guppy fathead minnow

* from Environmental Health Criteria 61: WHO Publication.

Toxicity in Microorganisms:

In general, toxicity for most microorganisms occurs in the range of 0.05-5 mg chromium/kg of medium. Trivalent chromium is less toxic than the hexavalent form. The main signs of toxicity are inhibition of growth and the inhibition of various metabolic processes such as photosynthesis or protein synthesis. Gramnegative soil bacteria are generally more sensitive to hexavalent chromium (1-12 mg/kg) than the grampositive types. Toxicity to trivalent chromium is not observed at similar levels. The toxicity of low levels of hexavalent chromium (1 mg/kg) indicates that soil microbial transformation, such as nitrification, may be affected. Chromium should not be introduced to municipal sewage treatment facilities.

Toxicity in Plants: Chromium in high concentrations can be toxic for plants. The main feature of chromium intoxication is chlorosis, which is similar to iron deficiency. Chromium affects carbohydrate metabolism and leaf chlorophyll concentration decreases with hexavalent chromium concentration (0.01-1 mg/l). The hexavalent form appears to more toxic than the trivalent species.

Biological half-life: The elimination curve for chromium, as measured by whole-body counting, has an exponential form. In rats, three different components of the curve have been identified, with half-lives of 0.5, 5.9 and 83.4 days, respectively.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 11 of 14 Section 12 - ECOLOGICAL INFORMATION

Water Standards: Chromium is identified as a hazardous substance in the Federal (U.S.) Water Pollution Control Act and further regulated by Clean Air Water Act Amendments (US). These regulations apply to discharge. The US Primary drinking water Maximum Contaminant Level (MCL), for chromium, is 0.05 mg/l (total chromium).

Since chromium compounds cannot volatilize from water, transport of chromium from water to the atmosphere is not likely, except by transport in windblown sea sprays. Most of the chromium released into water will ultimately be deposited in the sediment. A very small percentage of chromium can be present in water in both soluble and insoluble forms. Soluble chromium generally accounts for a very small percentage of the total chromium. Most of the soluble chromium is present as chromium(VI) and soluble chromium(III) complexes. In the aquatic phase, chromium(III) occurs mostly as suspended solids adsorbed onto clayish materials, organics, or iron oxide (Fe2O3) present in water. Soluble forms and suspended chromium can undergo intramedia transport. Chromium(VI) in water will eventually be reduced to chromium(III) by organic matter in the water. The reduction of chromium(VI) and the oxidation of chromium(III) in water has been investigated. The reduction of chromium(VI) by S-2 or Fe+2 ions under anaerobic conditions was fast, and the reduction halflife ranged from instantaneous to a few days. However, the reduction of chromium(VI) by organic sediments and soils was much slower and depended on the type and amount of organic material and on the redox condition of the water. The reaction was generally faster under anaerobic than aerobic conditions. The reduction half-life of chromium(VI) in water with soil and sediment ranged from 4 to 140 day. Dissolved oxygen by itself in natural waters did not cause any measurable oxidation of chromium(III) to chromium(VI) in 128 days. When chromium(III) was added to lake water, a slow oxidation of chromium(III) to chromium(VI) occurred, corresponding to an oxidation half-life of nine years. The oxidation of chromium(III) to chromium(VI) during chlorination of water was highest in the pH range of 5.5?6.0. However, the process would rarely occur during chlorination of drinking water because of the low concentrations of chromium(III) in these waters, and the presence of naturally occurring organics that may protect chromium(III) from oxidation, either by forming strong complexes with chromium(III) or by acting as a reducing agent to free available chlorine. The bioconcentration factor (BCF) for chromium(VI) in rainbow trout (Salmo gairdneri) is 1. In bottom feeder bivalves, such as the ovster (Crassostrea virginica), blue mussel (Mytilus edulis), and soft shell clam (Mya arenaria), the BCF values for chromium(III) and chromium(VI) may range from 86 to 192. The bioavailability of chromium(III) to freshwater invertebrates (Daphnia pulex) decreased with the addition of humic acid. This decrease in bioavailability was attributed to lower availability of the free form of the metal due to its complexation with humic acid. Based on this information, chromium is not expected to biomagnify in the aquatic food chain. Although higher concentrations of chromium have been reported in plants growing in high chromium-containing soils (e.g., soil near ore deposits or chromium-emitting industries and soil fertilized by sewage sludge) compared with plants growing in normal soils, most of the increased uptake in plants is retained in roots, and only a small fraction is translocated in the aboveground part of edible plants. Therefore, bioaccumulation of chromium from soil to above-ground parts of plants is unlikely. There is no indication of biomagnification of chromium along the terrestrial food chain (soil-plant-animal). The fate of chromium in soil is greatly dependent upon the speciation of chromium, which is a function of redox potential and the pH of the soil. In most soils, chromium will be present predominantly in the chromium(III) state. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. Under oxidizing conditions chromium(VI) may be present in soil as CrO4?2 and HCrO4-. In this form, chromium is relatively soluble, mobile, and toxic to living organisms. In deeper soil where anaerobic conditions exist, chromium(VI) will be reduced to chromium(III) by S-2 and Fe+2 present in soil. The reduction of chromium(VI) to chromium(III) is possible in aerobic soils that contain appropriate organic energy sources to carry out the redox reaction. The reduction of chromium(VI) to chromium(III) is facilitated by low pH. From thermodynamic considerations, chromium(VI) may exist in the aerobic zone of some natural soil. The oxidation of chromium(III) to chromium(VI) in soil is facilitated by the presence of low oxidisable organic substances, oxygen, manganese dioxide, and moisture. Organic forms of chromium(III) (e.g., humic acid complexes) are more easily oxidised than insoluble oxides. Because most chromium(III) in soil is immobilized due to adsorption and complexation with soil materials, the barrier to this oxidation process is the lack of availability of mobile chromium(III) to immobile manganese dioxide in soil surfaces. Due to this lack of availability of mobile chromium(III) to manganese dioxide surfaces, a large portion of chromium in soil will not be oxidized to chromium(VI), even in the presence of manganese dioxide and favorable pH conditions.

The microbial reduction of chromium(VI) to chromium(III) has been discussed as a possible remediation technique in heavily contaminated environmental media or wastes. Factors affecting the microbial reduction of chromium(VI) to chromium(III) include biomass concentration, initial chromium(VI) concentration, temperature, pH, carbon source, oxidation-reduction potential and the presence of both oxyanions and metal cations.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

CHEMWATCH 25-6528 Version No:2.0 CD 2011/1 Page 12 of 14 Section 12 - ECOLOGICAL INFORMATION

Although high levels of chromium(VI) are toxic to most microbes, several resistant bacterial species have been identified which could ultimately be employed in remediation strategies Chromium in soil is present mainly as insoluble oxide Cr2O3. nH2O, and is not very mobile in soil. A leachability study was conducted to study the mobility of chromium in soil. Due to differentpH values, a complicated adsorption process was observed and chromium moved only slightly in soil. Chromium was not found in the leachate from soil, possibly because it formed complexes with organic matter. These results support previous data finding that chromium is not very mobile in soil. These results are supported by leachability investigation in which chromium mobility was studied for a period of 4 years in a sandy loam. The vertical migration pattern of chromium in this soil indicated that after an initial period of mobility, chromium forms insoluble complexes and little leaching is observed. Flooding of soils and the subsequent anaerobic decomposition of plant detritus matters may increase the mobilization of chromium(III) in soils due to formation of soluble complexes. This complexation may be facilitated by a lower soil pH. A smaller percentage of total chromium in soil exists as soluble chromium(VI) and chromium(III), which are more mobile in soil. The mobility of soluble chromium in soil will depend on the sorption characteristics of the soil. The relative retention of metals by soil is in the order of lead > antimony > copper > chromium > zinc > nickel > cobalt > cadmium. The sorption of chromium to soil depends primarily on the clay content of the soil and, to a lesser extent, on Fe2O3 and the organic content of soil. Chromium that is irreversibly sorbed onto soil, for example, in the interstitial lattice of geothite, FeOOH, will not be bioavailable to plants and animals under any condition. Organic matter in soil is expected to convert soluble chromate, chromium(VI), to insoluble chromium(III) oxide, Cr2O3. Chromium in soil may be transported to the atmosphere as an aerosol. Surface runoff from soil can transport both soluble and bulk precipitate of chromium to surface water. Soluble and unadsorbed chromium(VI) and chromium(III) complexes in soil may leach into groundwater. The leachability of chromium(VI) in the soil increases as the pH of the soil increases. On the other hand, lower pH present in acid rain may facilitate leaching of acid-soluble chromium(III) and chromium(VI) compounds in soil.

Chromium has a low mobility for translocation from roots to aboveground parts of plants. However, depending on the geographical areas where the plants are grown, the concentration of chromium in aerial parts of certain plants may differ by a factor of 2?3.

In the atmosphere, chromium(VI) may be reduced to chromium(III) at a significant rate by vanadium (V2+, V3+, and VO2+), Fe2+, HSO3-, and As3+. Conversely, chromium(III), if present as a salt other than Cr2O3, may be oxidized to chromium(VI) in the atmosphere in the presence of at least 1% manganese oxide.. However, this reaction is unlikely under most environmental conditions. The estimated atmospheric half-life for chromium(VI) reduction to chromium(III) was reported in the range of 16 hours to about 5 days. DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

■ Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, UN, IATA, IMDG

NO HSR Number Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

chromic sulfate, basic (CAS: 12336-95-7,129039-96-9,60938-72-9,122483-54-9,12190-92-0,85251-54-3) is found on the following regulatory lists;

"Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals"

water (CAS: 7732-18-5) is found on the following regulatory lists;

"Australia Inventory of Chemical Substances (AICS)", "IMO IBC Code Chapter 18: List of products to which the Code does not apply", "International Fragrance Association (IFRA) Survey: Transparency List", "OECD Representative List of High Production Volume (HPV) Chemicals"

No data for Tanning Formula (CW: 25-6528)

Section 16 - OTHER INFORMATION

SW Revised 19 02 2020

INGREDIENTS WITH MULTIPLE CAS NUMBERS

Ingredient Name chromic sulfate, basic CAS

12336-95-7, 129039-96-9, 60938-72-9, 122483-54-9, 12190-92-0, 85251-54-3

EXPOSURE STANDARD FOR MIXTURES

"Worst Case" computer-aided prediction of spray/ mist or fume/ dust components and concentration:

Composite Exposure Standard for Mixture (TWA) :100 mg/m³.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering

Chemwatch Independent Material Safety Data Sheet Issue Date: 8-Feb-2011 NC317ECP

controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 8-Feb-2011 Print Date: 9-Feb-2011

This is the end of the MSDS.